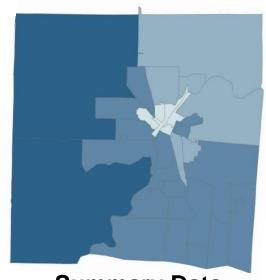
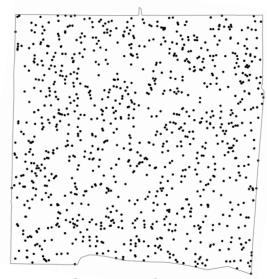


Validating Small Area Population Estimates Using Historical Census Data


Matt Ruther, Galen MacLaurin, Stefan Leyk, Barbara Buttenfield University of Colorado Boulder

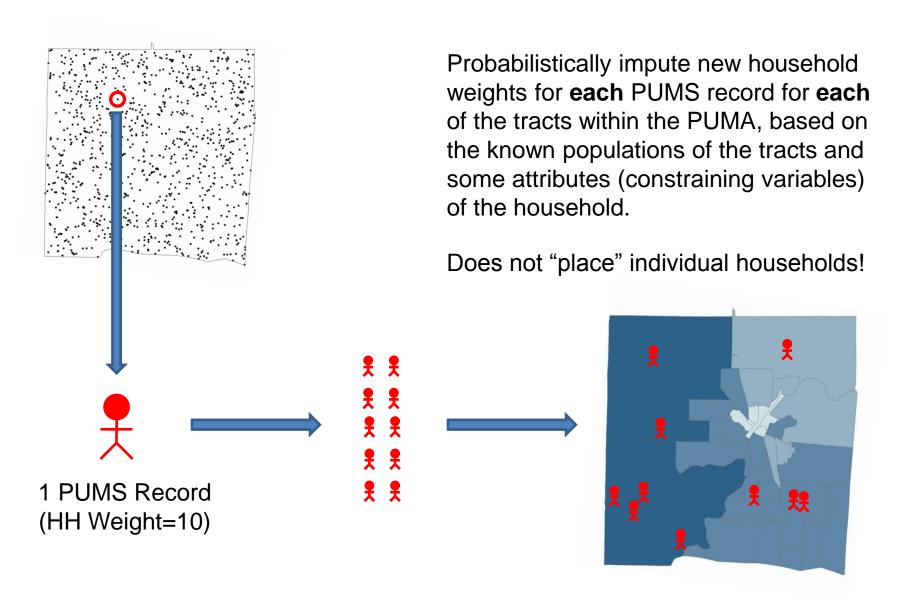
Nicholas Nagle University of Tennessee


April 13, 2013

This research is funded by the National Science Foundation: "Collaborative Research: Putting People in Their Place: Constructing a Geography for Census Microdata", BCS-0961598.

The Problem (What We Hope to Accomplish)

Summary Data tracts (or other subareas) fine geographic scale limited demographic detail



PUMS Data (microdata)
individual households
coarse geographic scale
extensive demographic detail

fine geographic scale extensive demographic detail

Imputation (and Allocation) in Pictures

Maximum Entropy Imputation

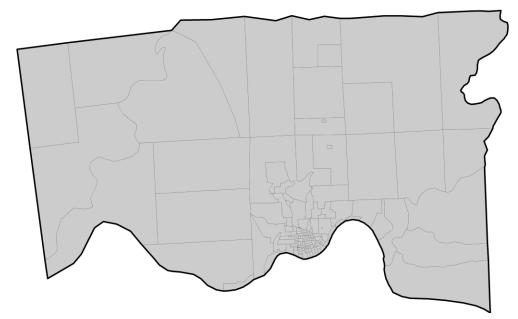
maximize
$$\sum_{i} \sum_{j} w_{ij} \log \left(\frac{w_{ij}}{d_{ij}} \right)$$
 subject to
$$\sum_{i} w_{ij} x_{ik} = x_{jk} \text{ for all } j, k$$

- *i* is a household, *j* is a tract in the PUMA, *k* is an attribute
- d_{ij} is the design weight (or prior weight), w_{ij} is the imputed weight

HH #	Design Weight	Tract 1	Tract 2	Tract 3
1	7	2.33	2.33	2.33
2	16	5.33	5.33	5.33
3	14	4.66	4.66	4.66
				:

	Design			
HH#	Weight	Tract 1	Tract 2	Tract 3
1	7	1.00	4.75	1.25
2	16	2.64	2.15	11.21
3	14	2.40	6.35	5.25

Benefits of the 1880 Census


- 100% count of the population publicly available (IPUMS)
- Full demographic detail and similar collection of population attributes
- Comparable spatial structure to contemporary censuses:
 - State Economic Area (SEA) ≈ PUMA Enumeration District (ED) ≈ Census Tract
- Spatial identifiers indicating location of household

1880 Validation Goals

- How does the model perform overall?
- How can we speed up the validation when accessing confidential data at a Census Research Data Center (CDRC)?
- What types of validation can be carried out without access to confidential data at a CRDC?
- How does changing model parameters affect allocation performance?

1880 Census Geography and Data

Hamilton County, Ohio

Source: Urban Transition Historical GIS Project

1 State Economic Area135 Enumeration Districts

Households: 68,160

Construct summary tables (for each enumeration district) from 100% microdata

Construct 5% synthetic PUMS from random sample of 100% microdata (design weight=20)

Synthetic PUMS sample: 3,408

Variables

Constraining Variables

Urban (vs. Rural)

Group quarters (vs. Non-group quarters)

White (vs. Non-white)

Foreign born (vs. Non-foreign born)

Occupation: Low-skill (vs. All other)

Validation Variables (of Household\Householder)

Gender: Male

Marital Status: Single, Married

Children: Any Children, 5+ Children

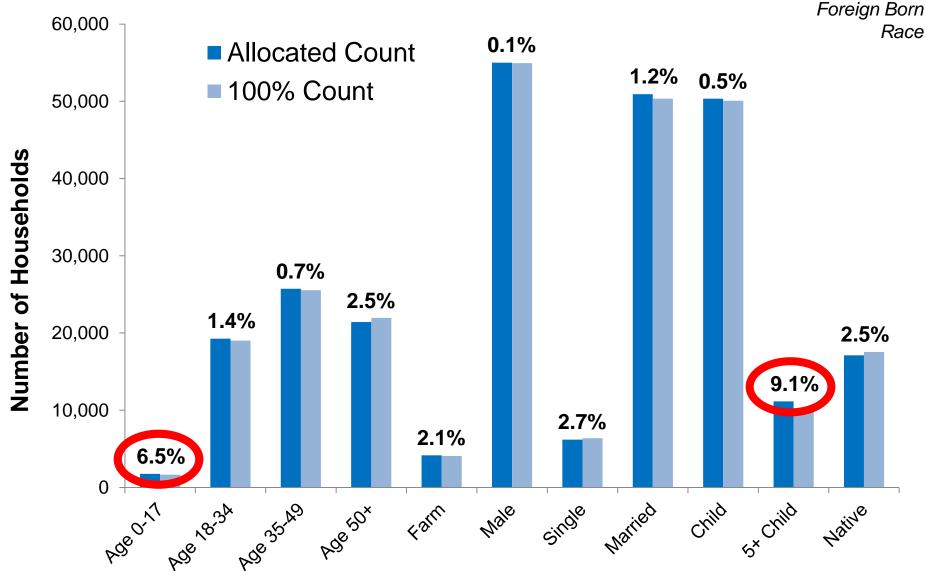
Age: 0-17, 18-34, 35-49, 50+

Nativity Status: *Native born (2nd Gen)*

Farm Status: Farm

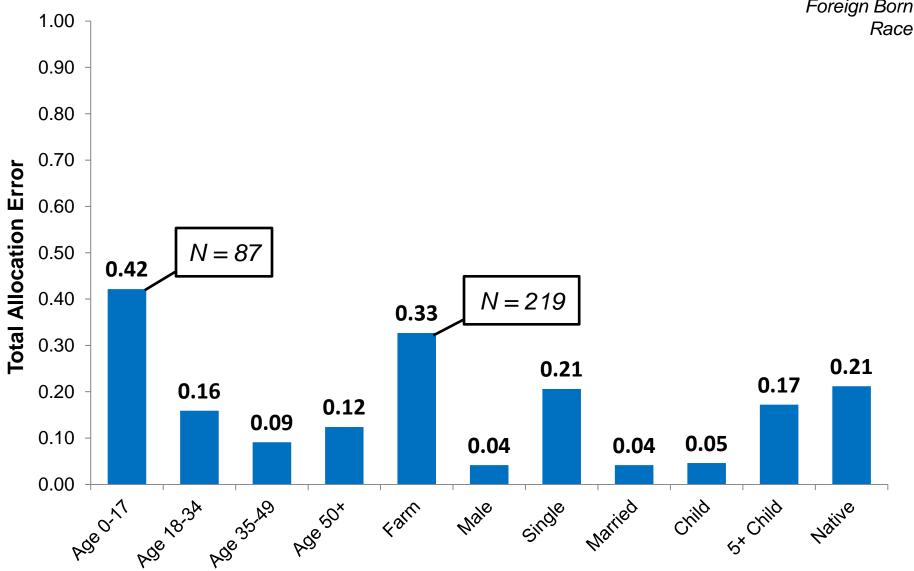
Evaluating Error

	Allocated	Actual	Residual
Enumeration District 1	110	110	0
Enumeration District 2	152	150	2
Enumeration District 3	127	140	13
Total	389	400	11

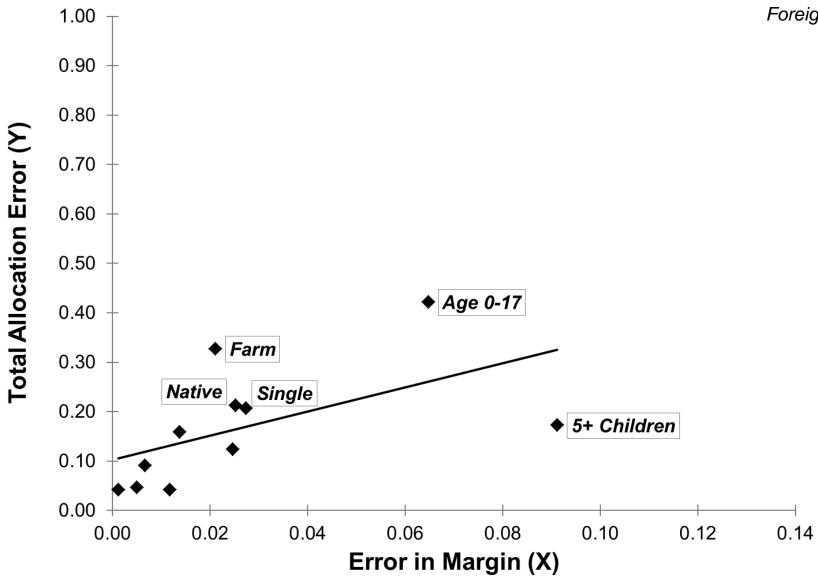

Error in Margin =
$$\left| \frac{Residual\ Total}{Actual\ Total} \right| = \left| \frac{389-400}{400} \right| = 0.03$$

Allocation Error
$$(ED_i) = \left| \frac{Residual ED_i}{Actual ED_i} \right| = \left| \frac{13}{140} \right| = 0.09$$

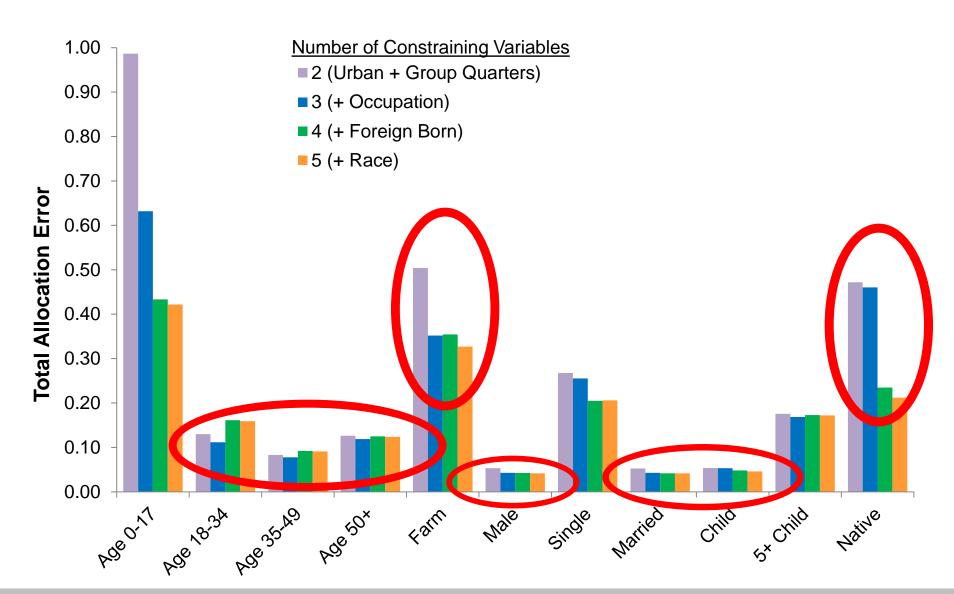
Total Allocation Error =
$$TAE = \frac{\sum_{i|Residual\ ED_{i}|}}{Actual\ Total} = \frac{|15|}{400} = 0.04$$


Error in Margin

Constraints
Urban/Rural
Group Quarters
Occupation
Foreign Born

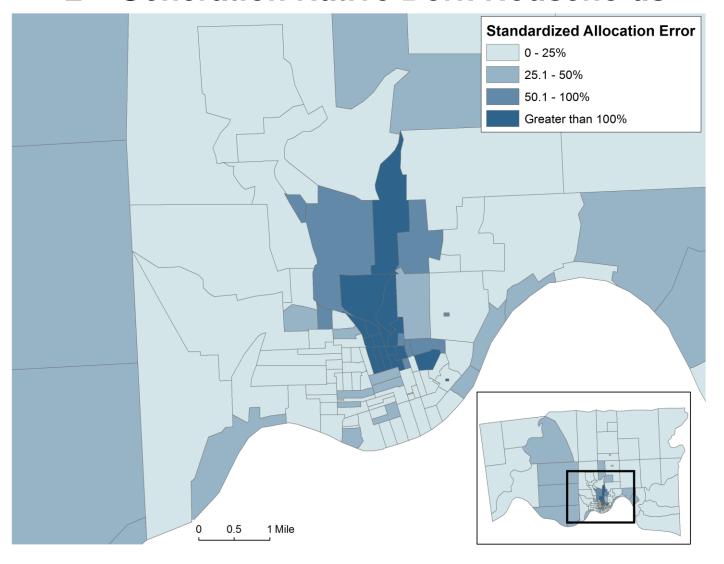

Total Allocation Error (TAE)

Constraints
Urban/Rural
Group Quarters
Occupation
Foreign Born



Error in Margin and TAE

Constraints
Urban/Rural
Group Quarters
Occupation
Foreign Born
Race



Total Allocation Error: Comparing Models

Spatial Heterogeneity in Allocation Errors:

2nd Generation Native Born Households

Validation Conclusions

How does the model perform overall?

Initial allocation results are promising

How can we streamline the validation prior to accessing confidential data at a CRDC?

- Much of this procedure can be carried out prior to visiting CRDC
- Compare metrics for variables available in summary tables

How does changing parameters affect performance?

- Generally, additional constraints improve TAE
- Additional constraint show notable improvement on variables with which they are correlated

.211		0	34 00	a.l	10 Se	were		000	v	34	M	-	20	5	NO	4 36	1 OHt	wi	69	9	bemek	Saus	_
1316	114	0	40	V	Havis Ja	una	0	Nea	R	0	4	5	*	w/	14	35 6	all	15	10		2	0	
1312	115	0	3000	No	mente go	seph B		Hea	3	0	u	W	12	14	1/2/	16 7	oh	10	17/		aime	dare	
				-		navia	8		1	ď	-	T.	41	71	NO	0	0.		27		homex	lace	
					2	·livide	0	Wy	9	1	P		36	M	NO 0	8 4	Der	nany.	12	NA.	done	kause	_
				-	- Be	mard		Son		2	M	w	16	5	400	9 9	Olas	is of	19		1 1		
				-	NA	nginia	- 1	Here	litero	2	F	W	114	50	Age o	0	A	.3	01	-	some	Muse.	
				~	- Juse	4		0 (0	14	1	11	The last	4000	8 0	V n	w	29		amel	puse	_
					And	1.0		Sa	1	34	M		11	10	A CO	55	ON	in	59		Jame	Laure .	-
. 0		_		A7	orno	yelyn		Hang	where	2	F	W	3	8	No	0	1 CH	Ti	159	4	anatha		_
1210	116	0	4500	10	Myahanbuh	el Fred		Head		0	4	W	45	14	Walc	01	Ohi)	24	1	anella		
					- Louis Pour	~ sam		Mac	-	0	7		13	19	VF012	8 1	ope	,	27		Donet	ALLA D	

Matt Ruther matthew.ruther@colorado.edu Department of Geography University of Colorado Boulder

This research is funded by the National Science Foundation: "Collaborative Research: Putting People in Their Place: Constructing a Geography for Census Microdata", project BCS-0961598 awarded to University of Colorado at Boulder and University of Tennessee at Knoxville. Funding by NSF is gratefully acknowledged.